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Abstract: Two different transport regimes of light are observed in 
reflection from the same disordered photonic crystal. A model based on the 
scaling theory of localization explains the behavior of the path length-
resolved reflection at two different probing wavelengths. Our results 
demonstrate the continuous renormalization of the photon diffusion 
coefficient measured in reflection from random media. 
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The propagation of light in a disordered medium is often modeled as a random walk of 
photons [1, 2]. This model inherently discards the wave nature of the light and instead 
describes the spreading of the energy in a manner similar to particles diffusing in a 
suspension. However, under certain conditions, interference effects between the multiply 
scattered waves within the medium will cause the random walk model to break down. 
Interference effects have been linked to a broad range of optical transport phenomena, 
including enhanced backscattering [3], transmittance fluctuations [4], and long range 
correlations [5], to name a few. A related phenomenon, that of Anderson localization [6], was 
first theorized for an electron in a disordered lattice. Localization was then generalized to all 
wave phenomena [7] and in particular to light [8]. In the case of light localization in a 
disordered photonic crystal, a new criterion for the localization transition has been postulated 
[9, 10]. 

Experimental work on light propagation in various disordered systems has revealed the 
subtleties involved in this field of study. Specifically, systems comprised of compressed TiO2 
powder [11], ground semiconductors [12], and planar photonic crystals [13] have all provided 
interesting and varied results. Many of these works derive their conclusions based on the 
scaling theory of localization [14] in which the optical diffusion coefficient is reduced as the 
size of the medium increases. For example, an argument based on the scaling theory was 
recently made to explain anomalies in the temporal shape of a pulse of light that was 
transmitted through a sample of compressed TiO2 powder [11]. Other experiments in highly 
scattering systems found renormalized values for the diffusion coefficient without observing 
the renormalization process itself [15]. Although useful for quantifying results, the theory is 
not explicit about the dynamics of the diffusion process and lacks an intuitive description for 
the evolution of the optical energy as it propagates through the medium. Furthermore, all of 
the above experiments were carried out in transmission. To date, there is no experimental 
report on the scale-dependent nature of the diffusion coefficient close to the localization 
threshold in reflection. Here we report the observation of two different transport regimes of 
reflected, multiply scattered light from the same disordered photonic crystal and describe the 
interaction with a model based on the scaling theory. 

To begin, imagine that an impulse of light (e.g. an ultrashort pulse) is incident on the 
surface of a slab of a random material of thickness L much smaller than the slab’s transverse 
dimensions. The pulse will take on average a time to traverse the slab. The diffusion 
coefficient D describes the root mean square temporal spread of the photon density within the 
classical random walk model. Under the condition that the transport mean free path 
approaches the wavelength λ of light but L remains large compared to λ, the diffusion 
coefficient will decrease with L according to [8, 16] 

 
3

abs

v
D

L Lξ
 

= + + 
 

ℓ ℓ ℓ ℓ
 (1) 

where v is the energy transport velocity and λ is the transport mean free path. The quantities ξ 
and Labs are known as the coherence and root mean square (RMS) absorption length, 
respectively, and act as cutoff length scales for the scaling behavior of the diffusion 
coefficient. Equation (1) is the solution to the differential scaling equation obtained by 
incorporating coherent backscattering corrections to classical diffusive transport of the wave 
energy [14]. The coherence length is predicted to diverge with optical frequency as the 
frequency approaches a photon mobility edge. Anomalous transport is expected on length 
scales shorter than ξ, whereas on longer scales light resumes diffusive behavior with a 
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reduced diffusion coefficient. The classical diffusion coefficient
0

3D v= ℓ can be recovered in 

the limit that the coherence length approaches the value of the transport mean free path and 
the system size and absorption lengths become large. 

The diffusion coefficient D is related to the RMS displacement R of the energy 

by 6R Dt= . When D is independent of R itself, the diffusion process is considered 

“normal”. However, when interference causes D to decrease with R the process is called 
subdiffusive. Our measurements support the hypothesis that, in reflection, R represents the 
effective size L of the system seen by the light as illustrated in Fig. 1. This makes the 
reflection geometry unique; in transmission, the system size is always set by the physical 
thickness of the medium. If we identify R with L in Eq. (1), then for R << ξ and Labs, Eq. (1) 

and the original relation between R and time predicts that ( )3

0
6R D t= ℓ . 

 

Fig. 1. The RMS displacement of the diffuse light from a source determines the effective size L 
of the material seen by the light. 

From the theory of optical diffusion, one can calculate the expression for the time-
resolved, backscattered photon flux across the surface of a semi-infinite disordered medium. 
The flux at the surface directly above an isotropic point source is [17] 

 ( ) ( ) ( ) ( )2

3 2 05 2

04 exp exp
4

e

e abs

z z
p t D z z t vt

Dt
π µ− −

 −
= × −  

  
 (2) 

where µabs is the absorption coefficient and z0 is the depth of the point source inside the 
medium, usually taken to be one transport mean free path. The extrapolation length ratio ze 
represents the distance (as a fraction of z0) outside of the medium at which the photon density 
goes to zero. All other quantities retain their previous meanings. 

From Eq. (2), the time-resolved photon flux depends on D and, consequently, contains 
information about the behavior of the RMS displacement of the energy. After taking the 
logarithm of both sides, one obtains 

 ( ) ( ) ( ) ( )2

03 5
log log log 2 .

2 2 4

e

abs

z z
p t D t vt const

Dt
µ= − − − − +    (3) 

The term describing the flux close to the boundary ( )2

0
4

e
z z Dt −  can be neglected for 

sufficiently long times. Furthermore, for times before the absorption becomes significant, one 
can neglect the third term as well. It follows that, when D is constant, the photon flux will 

decay with t according to a power law with an exponent −5/2. This behavior is valid only in 
the regime noted above, and is indeed observed in the diffuse reflectance from many 
relatively weak, multiple scattering materials such as suspensions of polystyrene microspheres 
in water (c.f. Figure 2) [18]. On the other hand, in the presence of scaling effects Eq. (2) will 
be modified as follows. Starting from Eq. (1), using the relation between the RMS 
displacement and system size, and neglecting the absorption losses, one easily finds that the 
diffusion coefficient D is given by 
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Here
0

3D v= ℓ is the diffusion coefficient in the absence of scaling. When the RMS 

displacement is much smaller than the coherence length ξ such that the first term in the sum of 

Eq. (4) is insignificant, the diffusion coefficient exhibits a scaling behavior like 1 3
D t

−
∼ . We 

emphasize here that the diffusion coefficient for a given photon does not vary with time. 
Instead, photons that are associated with a larger RMS displacement of the energy have a 
smaller (renormalized) diffusion coefficient. This fact is demonstrated later by the results of a 
transmission experiment in which no time dependent diffusion coefficient was observed. 

 

Fig. 2. Path length distribution measured in reflection for a semi-infinite medium comprising a 

suspension of 0.43 µm diameter polystyrene spheres in water. The −5/2 slope on a log-log 
scale is indicative of normal diffusion. 

In these conditions, after substituting Eq. (4) into Eq. (3) one obtains 

 ( ) ( )log 2 log .p t t const≅ − +    (5) 

This significant result predicts that any scaling effects will cause the decay of the photon 

flux to exhibit a power law dependence with a −2 exponent. Once the extent of the diffuse 

light has grown past the cutoff length scale imposed by ξ, one should expect a return to a −5/2 
exponent and an eventual exponential decay due to absorption losses or finite sample sizes. 

To test the scale-dependent diffusion hypothesis we explored optical diffusion in a 
disordered 3D silicon inverse-opal photonic crystal [19]. The presence of disorder in photonic 
crystals can induce a severe reduction in the electromagnetic density of states (DOS) and 
provides an ideal situation for the observation of scaling effects [8, 20]. To this end we 
employed optical path length spectroscopy (OPS) [18] to obtain photon path length 
distributions from the sample. The experimental setup is illustrated in Fig. 3 and consists of a 
fiber-based Michelson interferometer with a superluminescent LED as the source. A single-
mode fiber in one arm of the interferometer both injects and collects light from the sample. 
Due to the low coherence length of the source, interference between the two arms is observed 
only for backscattered light that has traveled a distance equivalent to twice the reference arm 
length, which is adjusted by a scanning mirror. The envelope of this interference signal is 
computed and corresponds to a path length distribution for one material realization. In 
principle, OPS provides the same information as that obtained in time-of-flight experiments 
[21]. A simple transformation from the mirror displacement, ∆, to time allows for a direct 
comparison between the two techniques. The simplicity of OPS and, most importantly, the 
single mode of operation for both emission and detection allow for an easy assessment of 
reflection type measurements. 
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Fig. 3. Fiber-based Michelson interferometer used for collection of photon path length 
distributions from multiple scattering media. The single-mode fiber acts as both a source and 
detector. 

We collected path length distributions from a disordered photonic crystal at two different 
wavelengths. The silicon inverse opal was grown under conditions leading to a large number 
of imperfections and is similar to those reported in Ref [15]. Light microscopy images of the 
sample revealed both small and large scale (tens to hundreds of lattice constants) lattice 
dislocations and variations in the normal-facing crystal plane. The path length distributions 
were recorded while slowly displacing the sample on a moveable stage beneath the probe 
fiber for 50 scans of the scanning mirror. All scans were averaged over the ensemble of path 
length distributions. The fiber was positioned at approximately 1 mm above the surface of the 
sample. No significant differences were observed for heights ranging from 200 µm to 1 mm. 
The fiber was also oriented at a slight angle with respect to the normal of the sample face to 
reduce the amount of single-scattered light reflected from the sample’s glass substrates. 
Furthermore, the impulse response of the entire system was subtracted from the origin of each 
distribution in order to reduce any ambiguity due to specular reflection from the surface. The 
two light sources that were used in our study had wavelengths of 1300 nm and 1550 nm and 
coherence lengths of 34 ± 2 µm and 38 ± 1 µm, respectively. The thickness of the sample was 
measured using a profilometer and was 15.0 ± 2.7 µm. 

Figure 4(a) depicts a typical averaged path length distribution as a function of ∆. The 
sample displays diffusive and scaling behaviors for excitations at 1300 nm and 1550 nm, 
respectively. The solid lines have been drawn on the graph as an aid to the eye. The power 

law with an exponent of −2 is a clear indication of a continuous renormalization of the 
diffusion coefficient when excited with 1550 nm light. It is worth noting that no other 
physical effect (e.g. absorption or finite sample size) can cause an increase in the slope from 

−5/2 to −2. The path length distributions collected from light with a wavelength of 1550 nm 
systematically decayed slower with path length over the regions of interest (∆ spanning 0 to 
~600 microns) than distributions from light with a wavelength of 1300 nm. 
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Fig. 4. (a) Path length distribution of reflected photon path lengths from the disordered 
photonic crystal. (b) Estimated density of states for the sample. Shaded bands indicate the 
spectral regions that were probed. The widths of the bands are related to the uncertainty in the 
lattice constant, a. 

The choice of wavelengths used in our measurements was made by considering the 
estimated density of states (DOS) as shown in Fig. 4(b). Band diagrams were calculated for 
thirteen different inverse opals whose structures were determined by three free parameters: 
the refractive index of silicon (ranging between 3.4 and 3.6), the ratio of the air hole diameter 
to the lattice constant (0.355 to 0.38), and the ratio of the outer diameter of the silicon spheres 
to the lattice constant (0.39 to 0.41) [19]. The values of the parameters for each structure were 
randomly chosen from the given ranges and represent realistic values and variations in our 
structure. Each band diagram was then numerically integrated in k-space over the first 
Brillouin zone to obtain the DOS for that structure. The final DOS estimate in Fig. 4(b) was 
obtained by averaging all thirteen structures. As can be seen, a pseudo-gap in the DOS at 
1550 nm survives the averaging and explains why renormalization is observed at this 
wavelength. The DOS at 1300 nm is larger than at 1550 nm and is more sensitive to the 
structural parameters, resulting in more uncertainty in the estimate. The sample is effectively 
random at this wavelength and no longer displays crystalline properties. 

Some of the relevant transport parameters were estimated from the measurements. In 
doing so we assumed an exponential loss due to absorption with a characteristic length 

of 3000
abs

mµ∆ = at both wavelengths. This value is consistent with Ref [15], in which a 

characteristic absorption time of 20
abs

psτ = was found. To fit the data at 1300 nm, we used 

the classical diffusion result in Eq. (2) and a least-squares fitting routine with an extrapolation 

#156020 - $15.00 USD Received 11 Oct 2011; revised 14 Nov 2011; accepted 17 Nov 2011; published 28 Nov 2011
(C) 2011 OSA 5 December 2011 / Vol. 19,  No. 25 / OPTICS EXPRESS  25325



  

length 1.6
e

z = . This value was estimated according to Ref [22]. for an averaged refractive 

index and the air-to-silicon filling fraction for our samples. The range of the fits included the 
second data point up to the one closest to 500 µm. The resulting value for D at 1300 nm 

was 235.6 8.9 m s± . The uncertainty is due to the finite coherence length of the light source. 

For data collected at 1550 nm, we used the same expression for the flux but with a diffusion 
coefficient depending on ∆ as given in Eq. (4). Two fitting parameters, ξ and λ, were used in 
this case. An initial diffusion coefficient D0 (before scaling effects begin) was then calculated 

with an assumed transport velocity of 73 10v m s= × , as justified previously [15]. The value 

for D0 is
225.5 6.8 m s± . In this case we estimated 2.5

e
z = based on the surface reflectivity 

measured at the two wavelengths and following again the procedure of Ref [22]. The 
corresponding value for ξ was found to be 13.6 ± 1.8 µm. Inserting these values into Eq. (1) 

together with the effective sample lengths 2
e e

L L z= + ℓ and neglecting the absorption cutoff, 

one can obtain the value for the renormalized diffusion coefficient: 7.4 ± 4.0 m
2
/s. This is the 

diffusion coefficient that would appear in path length-resolved transmission measurements. 
The reported uncertainty reflects both the fluctuations in the sample’s thickness and the effect 
of the finite coherence lengths of the sources. 

The significance of reflection measurements can be made further apparent by examining 
the behavior of transmitted, path length-resolved (or time-resolved) photons from our sample. 
Figure 5 depicts the equivalent time dependence of light transmittance through the sample. 
The data were collected by a modified OPS setup in which light from one arm of a fiber 
circulator was focused onto the sample and the fiber from another arm collected the light from 
the opposite surface. The data were then scaled onto the appropriate time axis. The slopes of 
the long time exponential decays were used to calculate the diffusion coefficient [21]. We 
found the values of 49.7 ± 8.1 m

2
/s and 3.9 ± 0.6 m

2
/s for wavelengths of 1300 nm and 1550 

nm, respectively. The value for D at 1550 nm agrees with the renormalized value estimated 
from reflection measurements, yet the behavior of the transmission data alone does not 
indicate that renormalization of the diffusion coefficient occurred. This is because a 
transmission experiment enforces the interaction with the entire medium. Photons arriving at 
different times (or path lengths) may have undergone different transport processes but this 
information is lost since every measured photon has necessarily traveled at least the sample 
thickness. Alternatively, a transmission experiment integrates over different scattering 
regimes. 

 

Fig. 5. Time of flight distributions measured in transmission at the two different wavelengths. 
The linear dependence on a semilog scale indicates that the diffusion coefficient depends on 
the size of the system, not time. 

In conclusion, we presented a simple model for optical subdiffusion in random media. The 
model explains the observed behavior of the path length distributions for photons traveling in 
disordered photonic crystals before the onset of loss. We have shown that the diffusion of the 
photons slows down and causes a relative increase in the probability of photons existing at 
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longer path lengths relative to shorter ones when compared to the case of normal diffusion. 

The power law decay with an exponent of −2 is a clear indication that the diffusion coefficient 
is being continuously renormalized. In contrast, a normal diffusion process is characterized by 

a −5/2 power law decay. 
We emphasize that our experiments were performed on exactly the same medium at two 

different wavelengths and demonstrate that structural disorder can induce vastly different 
spectral responses of the diffuse light. The present measurements provide the first conclusive 
evidence of scaling effects of light in reflection and suggest that the extent of the diffuse 
photon cloud in the medium can be interpreted as an effective system size. 
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